Модные функции цифровых фотоаппаратов

Часть 2. Оптимизация динамического диапазона

Сергей Асмаков

Объять необъятное

Сжатие — разумный компромисс

Заключение

 

Вторая часть цикла посвящена функциям оптимизации динамического диапазона изображений. В ней мы расскажем, зачем нужны подобные решения, рассмотрим различные варианты их реализации, а также их достоинства и недостатки.

Объять необъятное

В идеале фотоаппарат должен фиксировать изображение окружающего мира таким, каким его воспринимает человек. Однако в силу того, что механизмы «зрения» фотокамеры и человеческого глаза существенно различаются, есть ряд ограничений, не позволяющих выполнить это условие.

Одна из проблем, с которой сталкивались ранее пользователи пленочных фотоаппаратов и сталкиваются сейчас обладатели цифровых, заключается в невозможности адекватно запечатлеть сцены с большим перепадом освещенности без использования специальных приспособлений и/или особых приемов съемки. Особенности зрительного аппарата человека позволяют одинаково хорошо воспринимать детали высококонтрастных сцен как на ярко освещенных, так и на темных участках. К сожалению, сенсор фотоаппарата далеко не всегда способен запечатлеть изображение таким, каким видим его мы.

Чем больше перепад яркостей на фотографируемой сцене, тем выше вероятность потери деталей в светах и/или тенях. В результате вместо голубого неба с пышными облаками на снимке получается лишь белесое пятно, а расположенные в тени объекты превращаются в невнятные темные силуэты или вовсе сливаются с окружающей обстановкой.

В классической фотографии для оценки возможности фотоаппарата (или носителя в случае пленочных камер) передавать определенный диапазон яркостей используется понятие фотографической широты (подробнее см. во врезке). Теоретически фотографическая широта цифровых фотоаппаратов определяется разрядностью аналого-цифрового преобразователя (АЦП). Например, при применении 8-разрядного АЦП с учетом погрешности квантования теоретически достижимое значение фотографической широты составит 7 EV, для 12-разрядного — 11 EV и т.д. Однако в реальных устройствах динамический диапазон изображений оказывается уже теоретического максимума вследствие влияния разного рода шумов и прочих факторов.

 

Рисунок

Большой перепад уровней яркости представляет собой серьезную
проблему при фотосъемке. В данном случае возможностей фотоаппарата
оказалось недостаточно для адекватной передачи наиболее
светлых областей сцены, и в результате вместо участка голубого
неба (отмечен обводкой) получилась белая «заплатка»

Максимальное значение яркости, которое способен зафиксировать светочувствительный сенсор, определяется уровнем насыщения его ячеек. Минимальное значение зависит от нескольких факторов, в числе которых — величина теплового шума матрицы, шум переноса заряда и погрешность АЦП.

Стоит также отметить, что фотографическая широта одного и того же цифрового фотоаппарата может варьироваться в зависимости от установленного в настройках значения чувствительности. Максимальный динамический диапазон достижим при установке так называемой базовой чувствительности (соответствующей минимальному численному значению из возможных). По мере увеличения значения этого параметра динамический диапазон уменьшается вследствие возрастающего уровня шумов.

Фотографическая широта современных моделей цифровых фотоаппаратов, оснащенных сенсорами большого размера и 14- либо 16-разрядными АЦП, составляет от 9 до 11 EV, что значительно больше по сравнению с аналогичными характеристиками цветных негативных пленок 35-миллиметрового формата (в среднем от 4 до 5 EV). Таким образом, даже относительно недорогие цифровые фотоаппараты обладают фотографической широтой, достаточной для адекватной передачи большинства типичных сюжетов любительской съемки.

Однако существует проблема иного рода. Связана она с ограничениями, налагаемыми существующими стандартами записи цифровых изображений. Используя формат JPEG с разрядностью 8 бит на цветовой канал (который в настоящее время стал фактическим стандартом для записи цифровых изображений в компьютерной индустрии и цифровой технике), даже теоретически нельзя сохранить снимок, имеющий фотографическую широту более 8 EV.

Предположим, что АЦП фотоаппарата позволяет получить изображение разрядностью 12 или 14 бит, содержащее различимые детали как в светах, так и в тенях. Однако если фотографическая широта этого образа превосходит 8 EV, то в процессе преобразования в стандартный 8-битный формат без каких-либо дополнительных действий (то есть просто путем отбрасывания «лишних» разрядов) часть зафиксированной светочувствительным сенсором информации потеряется.

Динамический диапазон и фотографическая широта

Если говорить упрощенно, то динамический диапазон определяется как отношение максимального значения яркости изображения к ее минимальному значению. В классической фотографии традиционно используется термин фотографическая широта, который, по сути, обозначает то же самое.

Ширину динамического диапазона можно выразить в виде отношения (например, 1000:1, 2500:1 и т.п.), однако чаще всего для этого используется логарифмическая шкала. В этом случае вычисляется значение десятичного логарифма отношения максимальной яркости к ее минимальной величине, а после числа ставится прописная буква D (от англ. density?- плотность), реже?- аббревиатура OD (от англ. optical density?- оптическая плотность). Например, если отношение максимальной величины яркости к минимальному значению какого-либо устройства составляет 1000:1, то динамический диапазон будет равен 3,0 D:

lg(1000) = 3,0.

Для измерения фотографической широты традиционно используются так называемые единицы экспозиции, обозначаемые аббревиатурой EV (от англ. exposure values; профессионалы зачастую именуют их «стопами» или «ступенями»). Именно в этих единицах обычно задается величина коррекции экспозиции в настройках фотоаппарата. Увеличение значения фотографической широты на 1 EV эквивалентно удвоению разницы между максимальным и минимальным уровнями яркости. Таким образом, шкала EV также является логарифмической, но для расчета численных значений в данном случае применяется логарифм с основанием 2. Например, если какое-либо устройство обеспечивает возможность фиксации изображений, отношение максимальной величины яркости к минимальному значению которых достигает 256:1, то его фотографическая широта составит 8 EV:

log2(256) = 8.

Сжатие — разумный компромисс

Наиболее эффективным способом сохранить в полном объеме информацию об изображении, зафиксированную светочувствительным сенсором камеры, является запись снимков в формате RAW. Однако подобная функция имеется далеко не во всех фотоаппаратах, да и не каждый фотолюбитель готов заниматься кропотливой работой по подбору индивидуальных настроек для каждого сделанного снимка.

Чтобы снизить вероятность потери деталей высококонтрастных снимков, преобразуемых внутри камеры в 8-битный JPEG, в аппаратах многих производителей (причем не только компактных, но и зеркальных) были внедрены специальные функции, позволяющие без вмешательства пользователя сжимать динамический диапазон сохраняемых изображений. За счет снижения общего контраста и потери незначительной части информации исходного образа подобные решения позволяют сохранить в 8-битном формате JPEG детали в светах и тенях, зафиксированные светочувствительным сенсором аппарата, даже в том случае, если динамический диапазон исходного образа оказался шире 8 EV.

Одним из пионеров в освоении этого направления стала компания НР. В выпущенной в 2003 году цифровой фотокамере HP Photosmart 945 была впервые в мире реализована технология HP Adaptive Lightling, позволяющая автоматически компенсировать недостаток освещенности на темных областях снимков и таким образом сохранять детали в тенях без риска переэкспонирования (что весьма актуально при съемке высококонтрастных сцен). Алгоритм работы HP Adaptive Lightling основывается на принципах, изложенных английским ученым Эдвином Лэндом (Edwin Land) в теории зрительного восприятия человека RETINEX.

 

Рисунок

Меню функции HP Adaptive Lighting

Как же работает функция Adaptive Lighting? После получения 12-битного образа снимка из него экстрагируется вспомогательное монохромное изображение, которое фактически представляет собой карту освещенности. При обработке снимка эта карта используется в качестве маски, позволяющей регулировать степень воздействия довольно сложного цифрового фильтра на изображение. Таким образом, на участках, соответствующих наиболее темным точкам карты, воздействие на образ будущего снимка минимально, и наоборот. Такой подход позволяет проявить детали в тенях за счет избирательного осветления этих областей и соответственно снижения общей контрастности результирующего изображения.

Следует отметить, что при включении функции Adaptive Lighting сделанный снимок обрабатывается описанным выше образом перед тем, как готовое изображение будет записано в файл. Все описанные операции выполняются автоматически, а пользователь может лишь выбрать в меню фотоаппарата один из двух режимов работы Adaptive Lighting (низкий либо высокий уровень воздействия) либо отключить эту функцию.

Вообще говоря, многие специфические функции современных цифровых фотоаппаратов (в том числе и рассмотренные в предыдущей статье системы распознавания лиц) являются своего рода побочными либо конверсионными продуктами научно-исследовательских работ, которые изначально выполнялись для военных заказчиков. Что касается функций оптимизации динамического диапазона изображений, то одним из наиболее известных поставщиков подобных решений является компания Apical. Созданные ее сотрудниками алгоритмы, в частности, лежат в основе работы функции SAT (Shadow Adjustment Technology — технология коррекции теней), реализованной в ряде моделей цифровых фотоаппаратов Olympus. Вкратце работу функции SAT можно описать следующим образом: на основе исходного образа снимка создается маска, соответствующая наиболее темным участкам, и затем для этих областей производится автоматическая коррекция величины экспозиции.

Лицензию на право использования разработок Apical приобрела и компания Sony. Во многих моделях компактных фотоаппаратов серии Cyber-shot и в зеркальных камерах серии «альфа» реализована так называемая функция оптимизации динамического диапазона (Dynamic Range Optimizer, DRO).

 

Рисунок

Фотоснимки, сделанные камерой НР Photosmart R927 с отключенной (вверху)
и активированной функцией Adaptive Lighting

Коррекция снимка при активации DRO выполняется в процессе первичной обработки изображения (то есть до записи готового файла формата JPEG). В базовом варианте DRO имеет двухступенчатую настройку (в меню можно выбрать стандартный либо расширенный режим ее работы). При выборе стандартного режима на основе анализа образа снимка производится коррекция величины экспозиции, а затем к изображению применяется тоновая кривая для выравнивания общего баланса. В расширенном режиме используется более сложный алгоритм, позволяющий производить коррекцию как в тенях, так и в светах.

Разработчики Sony постоянно работают над усовершенствованием алгоритма работы DRO. Например, в зеркальной фотокамере а700 при активации продвинутого режима DRO предусмотрена возможность выбора одного из пяти вариантов коррекции. Кроме того, реализована возможность сохранения сразу трех вариантов одного снимка (своего рода брекетинг) с различными вариантами настроек DRO.

Во многих моделях цифровых фотоаппаратов компании Nikon имеется функция D-Lighting, в основе которой также использованы алгоритмы Apical. Правда, в отличие от описанных выше решений, D-Lighting реализована в виде фильтра для обработки ранее сохраненных снимков посредством тональной кривой, форма которой позволяет сделать тени более светлыми, сохраняя в неизменном виде остальные участки изображения. Но поскольку в этом случае обработке подвергаются уже готовые 8-битные изображения (а не исходный образ кадра, имеющий более высокую разрядность и соответственно более широкий динамический диапазон), то возможности D-Lighting весьма ограниченны. Получить такой же результат пользователь может путем обработки снимка в графическом редакторе.

 

Рисунок

При сравнении увеличенных фрагментов хорошо заметно, что темные участки исходного снимка (слева)
при включении функции Adaptive Lighting стали светлее

Существует и ряд решений, базирующихся на иных принципах. Так, во многих фотоаппаратах семейства Lumix компании Panasonic (в частности, DMC-FX35, DMC-TZ4, DMC-TZ5, DMC-FS20, DMC-FZ18 и др.) реализована функция распознавания освещенности (Intelligent Exposure), которая является составной частью системы интеллектуального автоматического управления съемкой iA. Работа функции Intelligent Exposure основывается на автоматическом анализе образа кадра и коррекции темных участков снимка во избежание потери деталей в тенях, а также (при необходимости) сжатия динамического диапазона высококонтрастных сцен.

В ряде случаев работа функции оптимизации динамического диапазона предусматривает не только определенные операции по обработке исходного образа снимка, но и коррекцию настроек съемки. Например, в новых моделях цифровых фотоаппаратов Fujifilm (в частности, в FinePix S100FS) реализована функция расширения динамического диапазона (Wide Dynamic Range, WDR), позволяющая, по данным разработчиков, увеличить фотографическую широту на одну или две ступени (в терминологии настроек — 200 и 400%).

При активации функции WDR камера делает снимки с экспокоррекцией –1 или –2 EV (в зависимости от выбранной настройки). Таким образом, образ кадра получается недодержанным — это необходимо для того, чтобы сохранить максимум информации о деталях в светах. Затем полученный образ обрабатывается при помощи тоновой кривой, что позволяет выровнять общий баланс и скорректировать уровень черного. После этого изображение преобразовывается в 8-битный формат и записывается в виде файла JPEG.

 

Рисунок

Сжатие динамического диапазона позволяет сохранить больше деталей
в светах и тенях, однако неизбежным следствием такого воздействия
является снижение общей контрастности. На нижнем изображении
гораздо лучше проработана фактура облаков, однако
из-за более низкого контраста этот вариант снимка
выглядит менее естественно

Схожая функция под названием Dynamic Range Enlargement реализована в ряде компактных и зеркальных фотоаппаратов компании Pentax (Optio S12, K200D и др.). По данным производителя, применение функции Dynamic Range Enlargement позволяет увеличить фотографическую широту снимков на 1 EV без потери деталей в светах и тенях.

Действующая подобным образом функция под названием Highlight tone priority (HTP) реализована в ряде зеркальных моделей компании Canon (EOS 40D, EOS 450D и др.). Согласно информации, приведенной в руководстве пользователя, активация HTP позволяет улучшить проработку деталей в светах (а точнее, в диапазоне уровней от 0 до 18% серого).

Заключение

Подведем итоги. Встроенная функция сжатия динамического диапазона позволяет с минимальным ущербом преобразовать исходное изображение с большим динамическим диапазоном в 8-битный файл JPEG. При отсутствии функции сохранения кадров в формате RAW режим сжатия динамического диапазона дает фотографу возможность более полно использовать потенциал своей камеры при съемке высококонтрастных сцен.

Разумеется, необходимо помнить о том, что сжатие динамического диапазона — это не чудодейственное средство, а скорее компромисс. За сохранение деталей в светах и/или тенях приходится расплачиваться увеличением уровня шума на темных участках снимка, снижением его контрастности и некоторым огрублением плавных тональных переходов.

Как и любая автоматическая функция, алгоритм сжатия динамического диапазона не является в полной мере универсальным решением, позволяющим улучшить абсолютно любой снимок. А следовательно, активировать его имеет смысл только в тех случаях, когда он действительно необходим. Например для того, чтобы снять силуэт c хорошо проработанным фоном, функцию сжатия динамического диапазона необходимо отключить — в противном случае эффектный сюжет будет безнадежно испорчен.

Завершая рассмотрение данной темы, необходимо отметить, что применение функций сжатия динамического диапазона не позволяет «вытянуть» на результирующем изображении детали, которые не были зафиксированы сенсором фотоаппарата. Для получения удовлетворительного результата при съемке высококонтрастных сюжетов необходимо использовать дополнительные приспособления (например, градиентные фильтры для фотографирования пейзажей) или специальные приемы (такие как съемка нескольких кадров с брекетингом по экспозиции и дальнейшее объединение их в одно изображение с применением технологии Tone Mapping).

Следующая статья будет посвящена функции серийной съемки.

Продолжение следует

 

В начало В начало

КомпьютерПресс 10'2008

Наш канал на Youtube

1999 1 2 3 4 5 6 7 8 9 10 11 12
2000 1 2 3 4 5 6 7 8 9 10 11 12
2001 1 2 3 4 5 6 7 8 9 10 11 12
2002 1 2 3 4 5 6 7 8 9 10 11 12
2003 1 2 3 4 5 6 7 8 9 10 11 12
2004 1 2 3 4 5 6 7 8 9 10 11 12
2005 1 2 3 4 5 6 7 8 9 10 11 12
2006 1 2 3 4 5 6 7 8 9 10 11 12
2007 1 2 3 4 5 6 7 8 9 10 11 12
2008 1 2 3 4 5 6 7 8 9 10 11 12
2009 1 2 3 4 5 6 7 8 9 10 11 12
2010 1 2 3 4 5 6 7 8 9 10 11 12
2011 1 2 3 4 5 6 7 8 9 10 11 12
2012 1 2 3 4 5 6 7 8 9 10 11 12
2013 1 2 3 4 5 6 7 8 9 10 11 12
Популярные статьи
КомпьютерПресс использует