oldi

Процессоры семейства AMD Phenom II

Сергей Пахомов

Модельный ряд процессоров семейства AMD Phenom II

Процессоры серии AMD Phenom II X4 900

Процессоры серии AMD Phenom II X4 800

Процессоры серии AMD Phenom II X3 700

Методика тестирования

Конфигурация тестового стенда

Результаты тестирования

 

В начале года, 8 января, компания AMD представила новую платформу AMD Dragon, основанную на процессоре нового семейства AMD Phenom II. Первоначально компания AMD продемонстрировала лишь два процессора данного семейства: AMD Phenom II X4 940 и AMD Phenom II X4 920, которые совместимы с разъемом AM2+ и поддерживают память DDR2. Позднее были представлены процессоры семейства AMD Phenom II, совместимые с разъемом AM3 и поддерживающие как DDR2-, так и DDR3-память. В этой статье мы рассмотрим результаты тестирования новых процессоров AMD семейства Phenom II.

Модельный ряд процессоров семейства AMD Phenom II

Главное отличие новых процессоров семейства AMD Phenom II от процессоров семейства AMD Phenom заключается в том, что они выполнены по 45-нм техпроцессу с применением технологии SOI, в то время как процессоры семейства AMD Phenom выполняются по 65-нм техпроцессу.

Точно так же, как и процессоры семейства AMD Phenom, они представляют собой истинно многоядерные процессоры, то есть все ядра процессора выполнены на одном кристалле.

Среди нововведений, реализованных в новых процессорах AMD Phenom II, можно также отметить усовершенствованную технологию AMD Cool’&’Quiet 3.0. Она объединяет в себе ряд функций, позволяющих снизить энергопотребление процессора в те моменты, когда он недозагружен, а также предотвратить перегрев процессора.

При анонсе нового процессора семейства AMD Phenom II X4 компания AMD указывала и на другие преимущества в сравнении с предыдущим семейством. В частности, отмечалось, что новые процессоры выполняют больше инструкций за такт (Instruction Per Clock, IPC).

Семейство процессоров AMD Phenom II в настоящее время включает три серии: AMD Phenom II X4 900, AMD Phenom II X4 800 и AMD Phenom II X3 700.

Процессоры серии AMD Phenom II X4 900

Сейчас в 900-ю серию процессоров входят две четырехъядерные модели: AMD Phenom II X4 940 и AMD Phenom II X4 920. Каждое ядро процессора AMD Phenom II X4 900-й серии имеет выделенный L2-кэш размером 512 Кбайт и разделяемый между всеми ядрами L3-кэш размером 6 Мбайт.

Процессор AMD Phenom II X4 940 имеет тактовую частоту 3,0 ГГц, а процессор AMD Phenom II X4 920 — 2,8 ГГц. Эти процессоры оснащены интегрированным двухканальным контроллером памяти DDR2 и поддерживают память DDR2-667/800/1066.

Процессоры AMD Phenom II X4 940 и AMD Phenom II X4 920 совместимы с разъемами Socket AM2+/AM2 и поддерживают шину HyperTransport 3.0 на скорости до 3600 МГц (двусторонняя) с пропускной способностью до 16 Гбайт/с. Оба процессора имеют TDP 125 Вт.

Разница между моделями процессоров AMD Phenom II X4 940 и AMD Phenom II X4 920 заключается не только в тактовой частоте, но еще и в том, что процессор AMD Phenom II X4 940 имеет разблокированный множитель, что позволяет реализовывать его эффективный разгон. Вообще, если говорить о разгонном потенциале процессора AMD Phenom II X4 940, то, по сообщениям независимых источников в Интернете, он достаточно большой. Так, есть данные, что применение жидкого азота для охлаждения процессора позволило достичь рекордной тактовой частоты в 6 ГГц, а посредством обычного воздушного охлаждения этот процессор легко разгоняется до 4 ГГц.

Добавим также, что в скором времени ожидается появление процессора AMD Phenom II X4 910, который будет иметь тактовую частоту 2,6 ГГц.

Процессоры серии AMD Phenom II X4 800

На данный момент 800-я серия процессоров включает всего одну модель четырехъядерного процессора — AMD Phenom II X4 810. Однако в скором времени ожидается появление еще одной модели — AMD Phenom II X4 805.

Отличие процессоров 800-й серии от процессоров 900-й серии заключается в урезанном размере кэша L3 и в том, что в процессорах 800-й серии реализован контроллер памяти, поддерживающий память как DDR2, так и DDR3. Кроме того, процессоры 800-й серии совместимы как с разъемами Socket AM2+/AM2, так и с разъемом Socket AM3.

Каждое ядро процессора AMD Phenom II X4 810 имеет выделенный L2-кэш размером 512 Кбайт и разделяемый между всеми ядрами L3-кэш размером 4 Мбайт. Процессор AMD Phenom II X4 810 работает с тактовой частотой 2,6 ГГц. Он оснащен интегрированным двухканальным контроллером памяти DDR2 (поддерживается память DDR2-667/800/1066) и контроллером памяти DDR3 (поддерживается память DDR3-800/1066/1333). TDP процессора составляет 95 Вт.

Процессоры серии AMD Phenom II X3 700

В настоящее время в 700-ю серию процессоров входят две модели: AMD Phenom II X3 720 и AMD Phenom II X3 710. Все процессоры 700-й серии являются трехъядерными. Каждое ядро процессора AMD Phenom II X4 720 и AMD Phenom II X3 710 имеет выделенный L2-кэш размером 512 Кбайт, а разделяемый между всеми ядрами L3-кэш имеет размер 6 Мбайт.

Как и процессоры 800-й серии, процессоры 700-й серии имеют интегрированный двухканальный контроллер памяти DDR2 (поддерживается память DDR2-667/800/1066) и контроллер памяти DDR3 (поддерживается память DDR3-800/1066/1333).

Процессор AMD Phenom II X3 720 работает на тактовой частоте 2,8 ГГц, а процессор AMD Phenom II X3 710 — на тактовой частоте 2,6 ГГц. Еще одно различие между AMD Phenom II X3 720 и AMD Phenom II X3 710 заключается в том, что в модели AMD Phenom II X3 720 разблокирован множитель, а следовательно, его можно легко разгонять.

Методика тестирования

Тестирование процессоров проводилось в два этапа. На первом этапе определялась производительность процессоров в различных приложениях, а на втором — в разных играх.

В ходе тестирования каждый тест запускался пять раз с перезагрузкой компьютера после каждого прогона теста и выдерживанием двухминутной паузы после перезагрузки. По результатам пяти прогонов теста рассчитывались средний арифметический результат и среднеквадратичное отклонение.

Весь процесс тестирования был полностью автоматизирован, для чего применялся специальный скрипт, который последовательно запускал все необходимые тесты, выполнял перезагрузку, выдерживал необходимые паузы и т.д. В этом тестовом скрипте для определения производительности в различных приложениях использовались следующие бенчмарки и приложения:

  • DivX Converter 6.6.1;
  • DivX Codec 6.8.5;
  • DivX Player 6.8.2;
  • Windows Media Encoder 9.0;
  • MainConcept Reference v.1.1;
  • VLC media player 0.8.6;
  • Lame 4.0 Beta;
  • WinRAR 3.8;
  • WinZip 11.2;
  • Adobe Photoshop CS4;
  • Microsoft Excel 2007.

Приложение DivX Converter 6.6.1 с кодеком DivX Codec 6.8.5 применялось для определения производительности при конвертировании исходного видеофайла в видеофайл формата DivX (предустановка Ноme Theater в приложении DivX Converter 6.6.1).

Приложение Windows Media Encoder 9.0 (WME 9.0) использовалось для определения производительности при конвертировании видеофайла, записанного в формате WMV, в видеофайл с меньшими разрешением и видеобитрейтом.

Приложение MainConcept Reference v.1.1 (кодек H.264) применялось для определения производительности при конвертировании исходного видеофайла, записанного в формате WMV, в видеофайл с иным разрешением и видеобитрейтом (предустановка Н.264 HDTV 720p).

Приложение Lame 4.0 Beta использовалось для определения производительности при конвертировании аудиофайла из WAV- в MP3-формат.

Приложение DivX Player 6.8.2 применялось в паре с приложением WME 9.0 для создания многозадачного теста. Смысл этого теста заключался в том, чтобы на фоне проигрывания видеофайла с применением приложения DivX Player 6.8.2 запускался процесс конвертирования этого же видеофайла с помощью приложения WME 9.0.

Еще один многозадачный тест заключался в том, чтобы одновременно проигрывать два видеофайла с помощью плеера VLC media player 0.8.6 и одновременно с этим производить конвертирование еще одного видеофайла с использованием приложения WME 9.0 и конвертирование аудиофайла из формата WAV в формат MP3 посредством приложения Lame 4.0 Beta.

Приложения WinRAR 3.8 и WinZip 11.2 применялись для определения производительности при архивировании и разархивировании большого количества цифровых фотографий в формате TIF. При сжатии данных с помощью программы WinRAR 3.8 использовалась максимальная степень компрессии и шифрование по алгоритму AES-128. При архивировании с применением программы WinZip 11.2 применялись максимальная степень компрессии и шифрование по алгоритму AES-256.

Приложение Adobe Photoshop CS4 использовалось нами для определения производительности системы при обработке цифровых фотографий. Наш тест с приложением Adobe Photoshop CS4 разбит на три подтеста. В первом из них мы последовательно применяли различные ресурсоемкие фильтры к одной и той же фотографии, имитируя при этом процесс ее художественной обработки.

В следующем подтесте с приложением Adobe Photoshop CS4 имитировалась пакетная обработка большого количества фотографий. Всего в тесте проводилась пакетная обработка 23 фотографий в формате TIF.

В третьем подтесте с приложением Adobe Photoshop CS4 имитировалась пакетная обработка RAW-фотографий.

Приложение Microsoft Excel 2007 применялось для определения производительности системы при выполнении вычислений в электронных таблицах Excel. Мы использовали две задачи в приложении Excel. Первая заключалась в пересчете электронной таблицы, а вторая состояла в имитации метода Монте-Карло для вероятностной оценки экономического риска.

Отметим, что результаты всех перечисленных тестов зависят от производительности процессора, памяти и жесткого диска. Однако они практически никак не зависят от производительности видеокарты.

Во всех перечисленных тестах результатом является время выполнения тестового задания, и чем оно меньше, тем лучше.

Для оценки производительности процессоров в играх использовались следующие игры и бенчмарки:

  • Quake 4 (Patch 1.42);
  • S.T.A.L.K.E.R.: Shadow of Chernobyl (Patch 1.005);
  • S.T.A.L.K.E.R.: Clear Sky (Patch 1.007);
  • Half-Life 2: Episode 2;
  • Crysis v.1.2.1;
  • Left4Dead;
  • Call of Juares Demo Benchmark v. 1.1.1.0;
  • 3DMark06 v. 1.1.0;
  • 3DMark Vantage v. 1.0.1.

В тестах Quake 4, S.T.A.L.K.E.R.: Shadow of Chernobyl, S.T.A.L.K.E.R.: Clear Sky, Half-Life 2: Episode 2, Crysis, Left4Dead и Call of Juares Demo Benchmark результатом являлось количество отображаемых кадров в секунду (frames per second, fps), а в бенчмарках 3DMark06 и 3DMark Vantage результат представлялся в безразмерных единицах (3DMark Score).

В ходе тестирования каждый игровой тест (за исключением 3DMark Vantage v. 1.0.1) запускался при разрешении экрана 1280x800, 1440x900, 1680x1050 и 1920x1200 точек. При каждом разрешении экрана игровые тесты запускались по пять раз с перезагрузкой компьютера после каждого прогона и выдерживанием двухминутной паузы после перезагрузки. Бенчмарк 3DMark Vantage v. 1.0.1 запускался по пять раз в каждом из четырех пресетов (Entry, Performance, High и Extreme).

По результатам пяти прогонов рассчитывались средний арифметический результат и среднеквадратичное отклонение. Весь процесс тестирования был полностью автоматизирован, для чего использовался специальный скрипт, который последовательно запускал все необходимые тесты, выполнял перезагрузку компьютера, выдерживал необходимые паузы и т.д.

Игра Crysis тестировалась с двумя демо-сценами, одна из которых служила для тестирования графического процессора, а другая — для тестирования центрального процессора в совокупности с графическим, поскольку при проигрывании затрагивает физическую составляющую движка игры (обе демо-сцены входят в комплект игры).

Все игры запускались в двух режимах настройки: максимальная производительность и максимальное качество. Режим настройки на максимальную производительность достигался за счет отключения таких эффектов, как анизотропная фильтрация текстур и экранное сглаживание, а также установки низкой детализации изображения и т.д. То есть данный режим был направлен на то, чтобы получить максимально возможный результат (максимальное значение FPS). В данном режиме настройки результат в большей степени зависит от производительности процессора и в меньшей степени от производительности видеокарты.

Режим настройки на максимальное качество достигался за счет использования высокой детализации, различных эффектов, анизотропной фильтрации текстур и экранного сглаживания. В данном режиме настройки результат в большей степени зависит от производительности видеокарты и в меньшей степени от производительности процессора.

При тестировании компьютеров по описанной выше методике мы традиционно используем понятие интегральной оценки производительности и соответственно понятие референсного ПК. Дело в том, что сами по себе результаты тестирования еще не дают представления о производительности ПК. Действительно, зная, что время конвертирования видеофайла составляет 120 с, еще нельзя сделать вывод о производительности, поскольку непонятно — много это или мало. То есть результаты тестирования имеют смысл лишь при возможности их сопоставления с результатами некоторого рефернсного ПК. Для сравнения производительности тестируемого и референсного ПК осуществлялось нормирование результатов, для чего время выполнения каждого тестового задания референсным ПК делилось на время выполнения этого же задания тестируемым процессором.

Для расчета интегральной оценки производительности на наборе приложений нормированные результаты тестов разбивались на шесть групп: конвертирование видео, конвертирование аудио, многозадачные тесты, работа с архиваторами, работа с Photoshop, работа с Excel. Далее в каждой группе тестов рассчитывался промежуточный интегральный результат как среднее геометрическое от нормированных результатов. После этого рассчитывалось среднее геометрическое от промежуточных интегральных результатов по всем группам тестов. Для удобства представления результатов полученное значение умножалось на 1000. Это и является интегральной оценкой производительности компьютера на наборе приложений. Для референсного ПК интегральный результат производительности на наборе приложений равен 1000 баллов, а для тестируемого ПК может быть как больше, так и меньше 1000 баллов.

В игровых приложениях также рассчитывается интегральный результат производительности, однако подход в данном случае несколько иной. Первоначально для каждой игры в каждом режиме настройки по формуле [1] рассчитывается средневзвешанный по всем разрешениям результат.

 

Рисунок

В данной формуле результаты для различных разрешений имеют разные весовые коэффициенты, причем максимальный весовой коэффициент имеет результат для разрешения 1440x900.

После этого рассчитывается среднее геометрическое между определенными по описанной выше формуле результатами для режима максимального качества и максимальной производительности. Найденный таким образом результат представляет собой интегральную оценку производительности ПК в отдельной игре.

Для получения интегральной оценки производительности в тесте 3DMark Vantage рассчитывается среднее геометрическое между результатами для всех пресетов по формуле [2].

 

Рисунок

Далее интегральные оценки производительности в каждой отдельной игре нормируются на аналогичные результаты для референсного ПК и рассчитывается среднее геометрическое по всем нормированным интегральным результатам. Для удобства представления результатов полученное значение умножается на 1000. Это и является интегральной оценкой производительности компьютера в играх. Для референсного ПК интегральный результат производительности в играх равен 1000 баллов.

В качестве референсной конфигурации мы использовали самый производительный (и самый дорогой) на начало 2009 года компьютер. Конфигурация референсного ПК была следующей:

  • процессор — Intel Core i7 Extreme 965 (тактовая частота 3,2 ГГц);
  • системная плата — ASUS RAMPAGE II EXTREME;
  • чипсет системной платы — Intel X58 Express;
  • память — DDR3-1066 (Qimonda IMSH1GU03A1F1C-10F PC3-8500);
  • объем памяти — 3 Гбайт (три модуля по 1024 Мбайт);
  • режим работы памяти – DDR3-1333, трехканальный режим;
  • тайминги памяти — 7-7-7-20;
  • видеокарта — две видеокарты GeForce GTX295 в режиме 4-Way SLI;
  • видеодрайвер — ForceWare 181.20;
  • жесткий диск — Intel SSD X25-M (Intel SSDSA2MH080G1GN).

Еще раз отметим, что наш референсный ПК является очень «навороченным» — это самый производительный и дорогой на данный момент компьютер. То есть интегральные результаты производительности всех остальных компьютеров должны быть ниже 1000 баллов.

Конфигурация тестового стенда

Мы протестировали три процессора семейства AMD Phenom II: AMD Phenom II X4 940, AMD Phenom II X4 810 и AMD Phenom II X4 720. Дабы обеспечить одинаковые для всех трех процессоров условия тестирования и с учетом того, что процессоры AMD Phenom II X4 810 и AMD Phenom II X4 720 поддерживают память как DDR2, так и DDR3, а процессор AMD Phenom II X4 940 — только память DDR2, для тестирования процессоров использовался стенд следующей конфигурации:

  • системная плата — ASUS M3A78-T;
  • чипсет системной платы — AMD790GX+SB750;
  • память — DDR2-1066 (A-Data);
  • объем памяти — 2 Гбайт (два модуля по 1024 Мбайт);
  • режим работы памяти — DDR2-1066, двухканальный режим;
  • тайминги памяти — 5-5-5-15;
  • видеокарта —Zotac GeForce GTX295;
  • видеодрайвер — ForceWare 182.05;
  • жесткий диск — Intel SSD X25-M (Intel SSDSA2MH080G1GN).

Результаты тестирования

Итак, после знакомства с методикой тестирования и алгоритмом расчета интегральных результатов производительности в приложениях и играх можно перейти к оглашению результатов тестирования.

В таблице приведено время выполнения тестовых задач в секундах для тестируемых процессоров и референсного ПК, а на рис. 1 представлены нормированные скорости выполнения тестовых задач. На рис. 2-20 представлены результаты тестирования процессоров в игровых приложениях.

 

Рисунок

Рис. 1. Нормированные скорости выполнения тестовых задач

Как видно по результатам тестирования, в неигровых приложениях производительность процессоров AMD Phenom II X4 ранжируется в следующем порядке: Phenom II X4 940, Phenom II X4 810, Phenom II X3 720. Причем производительность четырехъядерного процессора Phenom II X4 810 примерно на 19% выше производительности трехъядерного процессора Phenom II X3 720, а производительность процессора Phenom II X4 940 примерно на 15% выше производительности процессора Phenom II X4 810 и на 37% выше производительности процессора Phenom II X3 720.

 

Рисунок
Рисунок
Рис. 2. Результаты тестирования
в игре Quake 4 (Patch 1.42)
при настройках на минимальное качество
Рис. 3. Результаты тестирования
в игре Quake 4 (Patch 1.42)
при настройках на максимальное качество
Рисунок
Рисунок
Рис. 4. Результаты тестирования
в игре Half-Life 2: Episode 2
при настройках на минимальное качество
Рис. 5. Результаты тестирования
в игре Half-Life 2: Episode 2
при настройках на максимальное качество
Рисунок
Рисунок
Рис. 6. Результаты тестирования
в бенчмарке Call of Juares Demo
Benchmark v. 1.1.1.0 при настройках на минимальное качество
Рис. 7. Результаты тестирования
в бенчмарке Call of Juares Demo
Benchmark v. 1.1.1.0 при настройках на максимальное качество
Рисунок
Рисунок
Рис. 8. Результаты тестирования
в игре S.T.A.L.K.E.R.: Shadow of Chernobyl
(Patch 1.007) при настройках
на минимальное качество
Рис. 9. Результаты тестирования
в игре S.T.A.L.K.E.R.: Shadow of Chernobyl
(Patch 1.007) при настройках
на максимальное качество
Рисунок
Рисунок
Рис. 10. Результаты тестирования
в игре S.T.A.L.K.E.R.: Clear Sky
при настройках на минимальное качество
Рис. 11. Результаты тестирования
в игре S.T.A.L.K.E.R.: Clear Sky
при настройках на максимальное качество
Рисунок
Рисунок
Рис. 12. Результаты тестирования
в игре Left4Dead
при настройках на минимальное качество
Рис. 13. Результаты тестирования
в игре Left4Dead
при настройках на максимальное качество
Рисунок
Рисунок
Рис. 14. Результаты тестирования
в игре Crysis v.1.2 (CPU Score)
при настройках на минимальное качество
Рис. 15. Результаты тестирования
в игре Crysis v.1.2 (CPU Score)
при настройках на максимальное качество
Рисунок
Рисунок
Рис. 16. Результаты тестирования
в игре Crysis v.1.2 (GPU Score)
при настройках на минимальное качество
Рис. 17. Результаты тестирования
в игре Crysis v.1.2 (GPU Score)
при настройках на максимальное качество
Рисунок
Рисунок
Рис. 18. Результаты тестирования
в бенчмарке 3DMark’06 v. 1.1.0 (Score)
при настройках на минимальное качество
Рис. 19. Результаты тестирования
в бенчмарке 3DMark’06 v. 1.1.0 (Score)
при настройках на максимальное качество

Рисунок

Рис. 20. Результаты тестирования в бенчмарке 3DMark Vantage v. 1.0.1

В игровых приложениях ситуация несколько иная. Интегральный показатель производительности процессор Phenom II X4 940 в играх составляет 665 баллов; процессора Phenom II X4 810 — 591 балл, а процессора Phenom II X3 720 — 651 балл. То есть в играх трехъядерный процессор Phenom II X3 720 превосходит по производительности на 10% четырехъядерный процессор Phenom II X4 810. Напомним, что процессор Phenom II X3 720 имеет более высокую (на 200 МГц) тактовую частоту и кэш L3 размером 6, а не 4 Мбайт, как процессор Phenom II X4 810. Видимо, в современных играх тактовая частота процессора и размер кэша L3 оказывают на производительность большее влияние, нежели наличие еще одного ядра.

 

В начало В начало

КомпьютерПресс 3'2009