О влиянии работы электронного оборудования на силовые электрические сети

О.А.Григорьев, В.С.Петухов, В.А.Соколов, И.А.Красилов

Чем же плох ток от компьютера?

Пути решения проблемы

 

Материальной основой современного информационного общества, безусловно, является компьютер. За последние 10 лет он не только изменил образ жизни и работы миллиардов людей, но и, в свою очередь, сформировал новые требования к технической инфраструктуре, обеспечивающей его собственное функционирование.

Центр электромагнитной безопасности в последние три года в ходе выполнения ряда работ исследовал состояние систем электроснабжения 0,4 кВ в крупнейших зданиях Москвы, содержащих компьютерные сети численностью от 20 до более тысячи компьютеров. Анализ данных собственных измерений, подкрепленных затем анализом зарубежных научно-технических публикаций, общение с коллегами из IEEE (The Institute of Electrical and Electronics Engineers), привели нас к выводу, что Россия столкнулась с новой серьезнейшей проблемой. Суть ее состоит в том, что сети электроснабжения 0,4 кВ в зданиях, оснащенных компьютерной техникой, «заражены» высшими по отношению к промышленной частоте (50 Гц) гармониками.

Сразу хотим отметить, что проблема в данном случае не является исключительно российской — на определенном этапе концентрации компьютерной техники с ней столкнулись все страны и были вынуждены принимать решительные меры, включая кардинальное изменение технических регламентов эксплуатации, норм проектирования и разработки соответствующей базы стандартов. С учетом того, что наша страна рассчитывает, в том числе благодаря реализации Федеральной программы «Электронная Россия», на увеличение компьютерного парка в разы, считаем, что актуальность проблемы со временем будет нарастать.

Техническая подоплека вопроса заключается в следующем. В недалеком прошлом большая часть электрической энергии потреблялась линейными нагрузками — лампами накаливания, нагревательными элементами (ТЭН), двигательной нагрузкой и другими подобными электропотребителями. С конца 90-х годов резко возросла доля нелинейных электропотребителей, таких как персональные компьютеры и файл-серверы, компьютерная периферия, мониторы, лазерные принтеры, блоки бесперебойного питания (UPS), а также другое обязательное офисное оборудование — копировальные аппараты и факсы; газоразрядные лампы и другие нелинейные электропотребители. Дело в том, что для электропитания вышеперечисленного электронного оборудования используются встроенные импульсные источники питания, представляющие собой нелинейные нагрузки, сопротивление которых изменяется с течением времени.

Ток, потребляемый этими источниками, имеет ярко выраженный импульсный характер. Это объясняется схемными особенностями импульсных источников питания, а именно наличием сетевого выпрямителя (диодного моста) и сглаживающего емкостного фильтра. Другими словами, ток, потребляемый такими электропотребителями, в отличие от синусоидального тока линейных нагрузок, представляет собой периодический несинусоидальный сигнал.

Чем же плох ток от компьютера?

В случаях когда мощность нелинейных электропотребителей не превышает 10-15% общего потребления мощности, каких-либо особенностей в эксплуатации системы электроснабжения, как правило, не возникает. При превышении указанного предела следует ожидать появления различных проблем в эксплуатации и последствий, причины которых не являются очевидными. В зданиях, где доля нелинейной нагрузки превышает 25%, отдельные проблемы могут проявиться сразу же.

Наличие высших гармонических составляющих в токах нелинейных электропотребителей приводит к следующим негативным, а в ряде случаев и к катастрофическим последствиям:

  1. Возможен и весьма вероятен перегрев и разрушение нулевых рабочих проводников кабельных линий вследствие их перегрузки токами третьей гармоники, когда токи в нулевых рабочих проводниках значительно превосходят токи фазных проводников, а защита от токовых перегрузок в цепях нулевых проводников не предусмотрена (п.1.3.10 ПУЭ). Необходимо также отметить ускоренное старение изоляции при повышении рабочей температуры токонесущих проводников.

    При линейной, даже самой мощной, нагрузке ток в нулевом рабочем проводнике будет меньше, чем максимальный ток в фазных проводниках. Совсем иная ситуация складывается при наличии нелинейных нагрузок — в этом случае ток в нулевом рабочем проводнике может превышать ток в фазе более чем в 1,5 раза.

  2. Искажение синусоидальности питающего напряжения. Следствием характера тока, потребляемого импульсной нагрузкой, является деформация синусоиды напряжения, действующей на зажимах нагрузки. Синусоида напряжения становится «плоской» по форме, так как в момент импульса тока увеличивается падение напряжения на внутреннем сопротивлении сети (см. рисунок).

    Рассмотрим последствия воздействия «плоской» синусоиды на импульсный источник питания:

    • снижение уровня выпрямленного напряжения;
    • увеличение тепловыделения в элементах импульсного источника питания;
    • снижение устойчивости к кратковременным провалам напряжения.
  3. Гармоники, генерируемые нелинейной нагрузкой, создают дополнительные потери в трансформаторах. Эти потери могут привести к значительным потерям энергии и стать причиной выхода из строя трансформаторов вследствие перегрева.

    Протекание по обмоткам трансформатора несинусоидальных токов, в силу поверхностного эффекта и эффекта близости, приводит к увеличению активного сопротивления обмоток трансформатора и, как следствие, к дополнительному нагреву и к уменьшению срока его службы.

    Превышение температуры на 10° сокращает срок службы трансформатора примерно в два раза.

  4. В условиях несинусоидальности тока ухудшаются условия работы батарей конденсаторов. Батареи конденсаторов предназначены для компенсации реактивной мощности нагрузки, то есть для повышения коэффициента мощности электроустановки здания. Однако в условиях несинусоидальности тока батареи конденсаторов одновременно являются элементами, абсорбирующими гармоники со всей сети. Они изменяют нормальный путь гармоник тока от нелинейного потребителя к источнику питания, замыкая часть этого тока через себя.
  5. Сокращение срока службы электрооборудования возникает из-за интенсификации теплового и электрического старения изоляции. При рабочих температурах в изоляционных материалах протекают химические реакции, приводящие к постепенному изменению их изоляционных и механических свойств. С ростом температуры эти процессы ускоряются, сокращая срок службы оборудования. В конденсаторах потери энергии пропорциональны частоте, поэтому несинусоидальный ток приводит к дополнительному нагреву конденсаторов.
  6. Необоснованное срабатывание предохранителей и автоматических выключателей в результате дополнительного нагрева внутренних элементов защитных устройств, обусловленного протеканием несинусоидальных токов и, следовательно, действием поверхностного эффекта и эффекта близости.
  7. Ускоренное старение изоляции проводов и кабелей. Старение изоляции проводников и кабелей обусловлено протеканием несинусоидального тока, приводящего к повышенному нагреву наружной поверхности жил кабеля вследствие поверхностного эффекта и эффекта близости.
  8. Помехи в сетях телекоммуникаций могут возникать там, где силовые кабели и кабели телекоммуникаций расположены в относительной близости. Вследствие протекания в силовых кабелях высокочастотных гармоник тока, в кабелях телекоммуникаций могут наводиться помехи. Магнитные поля высших гармоник прямой и обратной последовательности частично компенсируют друг друга, поэтому наибольшую роль в проблеме влияния на телекоммуникации играют гармоники, кратные трем. Чем выше порядок гармоники, тем больше уровень помех, наведенных ими в телекоммуникационных кабелях.
В начало В начало

Пути решения проблемы

С учетом того, что большинство офисов располагается в зданиях постройки 20-30-летней давности, спроектированных и смонтированных для эксплуатации линейных электропотребителей, а также того, что в последнее время наблюдается значительный рост нелинейных нагрузок, необходим особый и сугубо профессиональный подход к эксплуатации систем электроснабжения таких зданий.

Безусловно, исходя из менталитета большинства руководителей эксплуатирующих служб в нашей стране необходимо подождать изменений в действующей нормативной базе, прежде всего в ПУЭ. И конечно, можно ждать, пока «грянет гром», особенно если оборудование, здание, прямые и косвенные потери, включая упущенную выгоду за время простоя, застрахованы от «необъяснимых» аварий в системе электроснабжения здания.

Тем не менее мы разработали определенный алгоритм действий и предложений, предназначенных для реализации на по-настоящему серьезных объектах, где тратят деньги на предупреждение проблем, а не на ликвидацию их последствий. Приводим их ниже.

  1. Выделить полную номенклатуру всех электропотребителей общего назначения, относящихся к категории нелинейных и вызывающих генерацию повышенной доли высших гармоник в сетях электроснабжения.
  2. На объектах с долей установленной мощности нелинейных электропотребителей 10% и выше в целях предупреждения развития пожароопасных и аварийных ситуаций провести диагностику состояния и прогнозирование работы сети электропитания в плане оценки доли высших гармоник, качества электроэнергии, токовых нагрузок фазных и нулевых рабочих проводников с учетом несинусоидальности токов и напряжений.
  3. Учитывать фактор влияния нелинейности нагрузок электропотребителей и наличия высших гармонических составляющих при выполнении проектов реконструкции существующих систем электроснабжения и при разработке новых проектов, в том числе при выполнении расчета условий тепловыделения, уровней падения напряжения в кабельных линиях и оценке влияния нелинейных нагрузок на качество питающего напряжения у конечных электропотребителей.
  4. Выполнять прогнозирование возможных последствий роста компьютерных нагрузок при расширении компьютерных сетей, особенно при использовании существующей системы электроснабжения (без проведения ее модернизации).
  5. При проведении работ по диагностике и анализу систем электроснабжения в дополнение к действующим национальным российским нормативным документам использовать стандарт США «IEEE Recommended Practice for Industrial and Commercial Power System Analysis» IEEE Std 399-1997.

Материал предоставлен «Центром электромагнитной безопасности»

КомпьютерПресс 1'2003

Наш канал на Youtube

1999 1 2 3 4 5 6 7 8 9 10 11 12
2000 1 2 3 4 5 6 7 8 9 10 11 12
2001 1 2 3 4 5 6 7 8 9 10 11 12
2002 1 2 3 4 5 6 7 8 9 10 11 12
2003 1 2 3 4 5 6 7 8 9 10 11 12
2004 1 2 3 4 5 6 7 8 9 10 11 12
2005 1 2 3 4 5 6 7 8 9 10 11 12
2006 1 2 3 4 5 6 7 8 9 10 11 12
2007 1 2 3 4 5 6 7 8 9 10 11 12
2008 1 2 3 4 5 6 7 8 9 10 11 12
2009 1 2 3 4 5 6 7 8 9 10 11 12
2010 1 2 3 4 5 6 7 8 9 10 11 12
2011 1 2 3 4 5 6 7 8 9 10 11 12
2012 1 2 3 4 5 6 7 8 9 10 11 12
2013 1 2 3 4 5 6 7 8 9 10 11 12
Популярные статьи
КомпьютерПресс использует