Синхронизация процессов при работе с Windows
Функции, ожидающие единственный объект
Функции, ожидающие несколько объектов
Прерывание ожидания по запросу на завершение операции ввода-вывода или APC
Waitable timer (таймер ожидания)
Дополнительные объекты синхронизации
Сообщение об изменении папки (change notification)
Устройство стандартного ввода с консоли (console input)
Дополнительные механизмы синхронизации
Защищенный доступ к переменным (Interlocked Variable Access)
При одновременном доступе нескольких процессов (или нескольких потоков одного процесса) к какому-либо ресурсу возникает проблема синхронизации. Поскольку поток в Win32 может быть остановлен в любой, заранее ему неизвестный момент времени, возможна ситуация, когда один из потоков не успел завершить модификацию ресурса (например, отображенной на файл области памяти), но был остановлен, а другой поток попытался обратиться к тому же ресурсу. В этот момент ресурс находится в несогласованном состоянии, и последствия обращения к нему могут быть самыми неожиданными — от порчи данных до нарушения защиты памяти.
Главной идеей, заложенной в основе синхронизации потоков в Win32, является использование объектов синхронизации и функций ожидания. Объекты могут находиться в одном из двух состояний — Signaled или Not Signaled. Функции ожидания блокируют выполнение потока до тех пор, пока заданный объект находится в состоянии Not Signaled. Таким образом, поток, которому необходим эксклюзивный доступ к ресурсу, должен выставить какой-либо объект синхронизации в несигнальное состояние, а по окончании — сбросить его в сигнальное. Остальные потоки должны перед доступом к этому ресурсу вызвать функцию ожидания, которая позволит им дождаться освобождения ресурса.
Рассмотрим, какие объекты и функции синхронизации предоставляет нам Win32 API.
Функции синхронизации
Функции синхронизации делятся на две основные категории: функции, ожидающие единственный объект, и функции, ожидающие один из нескольких объектов.
Функции, ожидающие единственный объект
Простейшей функцией ожидания является функция WaitForSingleObject:
function WaitForSingleObject( hHandle: THandle; // идентификатор объекта dwMilliseconds: DWORD // период ожидания ): DWORD; stdcall;
Функция ожидает перехода объекта hHandle в сигнальное состояние в течение dwMilliseconds миллисекунд. Если в качестве параметра dwMilliseconds передать значение INFINITE, функция будет ждать в течение неограниченного времени. Если dwMilliseconds равен 0, то функция проверяет состояние объекта и немедленно возвращает управление.
Функция возвращает одно из следующих значений:
WAIT_ABANDONED |
Поток, владевший объектом, завершился, не переведя объект в сигнальное состояние |
WAIT_OBJECT_0 |
Объект перешел в сигнальное состояние |
WAIT_TIMEOUT |
Истек срок ожидания. Обычно в этом случае генерируется ошибка либо функция вызывается в цикле до получения другого результата |
WAIT_FAILED |
Произошла ошибка (например, получено неверное значение hHandle). Более подробную информацию можно получить, вызвав GetLastError |
Следующий фрагмент кода запрещает доступ к Action1 до перехода объекта ObjectHandle в сигнальное состояние (например, таким образом можно дожидаться завершения процесса, передав в качестве ObjectHandle его идентификатор, полученный функцией CreateProcess):
var Reason: DWORD; ErrorCode: DWORD; Action1.Enabled := FALSE; try repeat Application.ProcessMessages; Reason := WailForSingleObject(ObjectHandle, 10); if Reason = WAIT_FAILED then begin ErrorCode := GetLastError; raise Exception.CreateFmt( ‘Wait for object failed with error: %d’, [ErrorCode]); end; until Reason <> WAIT_TIMEOUT; finally Actionl.Enabled := TRUE; end;
В случае когда одновременно с ожиданием объекта требуется перевести в сигнальное состояние другой объект, может использоваться функция SignalObjectAndWait:
function SignalObjectAndWait( hObjectToSignal: THandle; // объект, который будет переведен в // сигнальное состояние hObjectToWaitOn: THandle; // объект, который ожидает функция dwMilliseconds: DWORD; // период ожидания bAlertable: BOOL // задает, должна ли функция возвращать // управление в случае запроса на // завершение операции ввода-вывода ): DWORD; stdcall;
Возвращаемые значения аналогичны функции WaitForSingleObject.
! В модуле Windows.pas эта функция ошибочно объявлена как возвращающая значение BOOL. Если вы намерены ее использовать – объявите ее корректно или используйте приведение типа возвращаемого значения к DWORD. |
Объект hObjectToSignal может быть семафором, событием (event) либо мьютексом. Параметр bAlertable определяет, будет ли прерываться ожидание объекта в случае, если операционная система запросит у потока окончание операции асинхронного ввода-вывода либо асинхронный вызов процедуры. Более подробно это будет рассматриваться ниже.
Функции, ожидающие несколько объектов
Иногда требуется задержать выполнение потока до срабатывания одного или сразу всех из группы объектов. Для решения подобной задачи используются следующие функции:
type TWOHandleArray = array[0..MAXIMUM_WAIT_OBJECTS - 1] of THandle; PWOHandleArray = ^TWOHandleArray; function WaitForMultipleObjects( nCount: DWORD; // Задает количество объектов lpHandles: PWOHandleArray; // Адрес массива объектов bWaitAll: BOOL; // Задает, требуется ли ожидание всех // объектов или любого dwMilliseconds: DWORD // Период ожидания ): DWORD; stdcall;
Функция возвращает одно из следующих значений:
Число в диапазоне от WAIT_OBJECT_0 до WAIT_OBJECT_0 + nCount – 1 |
Если bWaitAll равно TRUE, то это число означает, что все объекты перешли в сигнальное состояние. Если FALSE — то, вычтя из возвращенного значения WAIT_OBJECT_0, мы получим индекс объекта в массиве lpHandles |
Число в диапазоне от WAIT_ABANDONED_0 до WAIT_ABANDONED_0 + nCount – 1 |
Если bWaitAll равно TRUE, это означает, что все объекты перешли в сигнальное состояние, но хотя бы один из владевших ими потоков завершился, не сделав объект сигнальным Если FALSE — то, вычтя из возвращенного значения WAIT_ABANDONED_0, мы получим в массиве lpHandles индекс объекта, при этом поток, владевший этим объектом, завершился, не сделав его сигнальным |
WAIT_TIMEOUT |
Истек период ожидания |
WAIT_FAILED |
Произошла ошибка |
Например, в следующем фрагменте кода программа пытается модифицировать два различных ресурса, разделяемых между потоками:
var Handles: array[0..1] of THandle; Reason: DWORD; RestIndex: Integer; ... Handles[0] := OpenMutex(SYNCHRONIZE, FALSE, ‘FirstResource’); Handles[1] := OpenMutex(SYNCHRONIZE, FALSE, ‘SecondResource’); // Ждем первый из объектов Reason := WaitForMultipleObjects(2, @Handles, FALSE, INFINITE); case Reason of WAIT_FAILED: RaiseLastWin32Error; WAIT_OBJECT_0, WAIT_ABANDONED_0: begin ModifyFirstResource; RestIndex := 1; end; WAIT_OBJECT_0 + 1, WAIT_ABANDONED_0 + 1: begin ModifySecondResource; RestIndex := 0; end; // WAIT_TIMEOUT возникнуть не может end; // Теперь ожидаем освобождения следующего объекта if WailForSingleObject(Handles[RestIndex], INFINITE) = WAIT_FAILED then RaiseLastWin32Error; // Дождались, модифицируем оставшийся ресурс if RestIndex = 0 then ModifyFirstResource else ModifySecondResource;
Описанную выше технику можно применять, если вы точно знаете, что задержка ожидания объекта будет незначительной. В противном случае ваша программа окажется «замороженной» и не сможет даже перерисовать свое окно. Если период задержки может оказаться значительным, то необходимо дать программе возможность реагировать на сообщения Windows. Выходом может стать использование функций с ограниченным периодом ожидания (и повторный вызов — в случае возврата WAIT_TIMEOUT) либо функции MsgWaitForMultipleObjects:
function MsgWaitForMultipleObjects( nCount: DWORD; // количество объектов синхронизации var pHandles; // адрес массива объектов fWaitAll: BOOL; // Задает, требуется ли ожидание всех // объектов или любого dwMilliseconds, // Период ожидания dwWakeMask: DWORD // Тип события, прерывающего ожидание ): DWORD; stdcall;
Главное отличие этой функции от предыдущей — параметр dwWakeMask, который является комбинацией битовых флагов QS_XXX и задает типы сообщений, прерывающих ожидание функции независимо от состояния ожидаемых объектов. Например, маска QS_KEY позволяет прервать ожидание при появлении в очереди сообщений WM_KEYUP, WM_KEYDOWN, WM_SYSKEYUP или WM_SYSKEYDOWN, а маска QS_PAINT — сообщения WM_PAINT. Полный список значений, допустимых для dwWakeMask, имеется в документации по Windows SDK. При появлении в очереди потока, вызвавшего функцию, сообщений, соответствующих заданной маске, функция возвращает значение WAIT_OBJECT_0 + nCount. Получив это значение, ваша программа может обработать его и снова вызвать функцию ожидания. Рассмотрим пример с запуском внешнего приложения (необходимо, чтобы на время его работы вызывающая программа не реагировала на ввод пользователя, однако ее окно должно продолжать перерисовываться):
procedure TForm1.Button1Click(Sender: TObject); var PI: TProcessInformation; SI: TStartupInfo; Reason: DWORD; Msg: TMsg; begin // Инициализируем структуру TStartupInfo FillChar(SI, SizeOf(SI), 0); SI.cb := SizeOf(SI); // Запускаем внешнюю программу Win32Check(CreateProcess(NIL, 'COMMAND.COM', NIL, NIL, FALSE, 0, NIL, NIL, SI, PI)); //************************************************** // Попробуйте заменить нижеприведенный код на строку // WaitForSingleObject(PI.hProcess, INFINITE); // и посмотреть, как будет реагировать программа на // перемещение других окон над ее окном //************************************************** repeat // Ожидаем завершения дочернего процесса или сообщения // перерисовки WM_PAINT Reason := MsgWaitForMultipleObjects(1, PI.hProcess, FALSE, INFINITE, QS_PAINT); if Reason = WAIT_OBJECT_0 + 1 then begin // В очереди сообщений появился WM_PAINT – Windows // требует обновить окно программы. // Удаляем сообщение из очереди PeekMessage(Msg, 0, WM_PAINT, WM_PAINT, PM_REMOVE); // И перерисовываем наше окно Update; end; // Повторяем цикл, пока не завершится дочерний процесс until Reason = WAIT_OBJECT_0; // Удаляем из очереди накопившиеся там сообщения while PeekMessage(Msg, 0, 0, 0, PM_REMOVE) do; CloseHandle(PI.hProcess); CloseHandle(PI.hThread) end;
Если в потоке, вызывающем функции ожидания, явно (функцией CreateWindow) или неявно (используя TForm, DDE, COM) создаются окна Windows — поток должен обрабатывать сообщения. Поскольку широковещательные сообщения посылаются всем окнам в системе, то поток, не обрабатывающий сообщения, может вызвать взаимоблокировку (система ждет, когда поток обработает сообщение, поток — когда система или другие потоки освободят объект) и привести к зависанию Windows. Если в вашей программе имеются подобные фрагменты, необходимо использовать MsgWaitForMultipleObjects или MsgWaitForMultipleObjectsEx и позволять прервать ожидание для обработки сообщений. Алгоритм аналогичен вышеприведенному примеру.
Прерывание ожидания по запросу на завершение операции ввода-вывода или APC
Windows поддерживает асинхронные вызовы процедур. При создании каждого потока (thread) с ним ассоциируется очередь асинхронных вызовов процедур (APC queue). Операционная система (или приложение пользователя — при помощи функции QueueUserAPC) может помещать в нее запросы на выполнение функций в контексте данного потока. Эти функции не могут быть выполнены немедленно, поскольку поток может быть занят. Поэтому операционная система вызывает их, когда поток вызывает одну из следующих функций ожидания:
function SleepEx( dwMilliseconds: DWORD; // Период ожидания bAlertable: BOOL // задает, должна ли функция возвращать // управление в случае запроса на // асинхронный вызов процедуры ): DWORD; stdcall;
function WaitForSingleObjectEx( hHandle: THandle; // Идентификатор объекта dwMilliseconds: DWORD; // Период ожидания bAlertable: BOOL // задает, должна ли функция возвращать // управление в случае запроса на // асинхронный вызов процедуры ): DWORD; stdcall;
function WaitForMultipleObjectsEx( nCount: DWORD; // количество объектов lpHandles: PWOHandleArray;// адрес массива идентификаторов объектов bWaitAll: BOOL; // Задает, требуется ли ожидание всех // объектов или любого dwMilliseconds: DWORD; // Период ожидания bAlertable: BOOL // задает, должна ли функция возвращать // управление в случае запроса на // асинхронный вызов процедуры ): DWORD; stdcall;
function SignalObjectAndWait( hObjectToSignal: THandle; // объект, который будет переведен в // сигнальное состояние hObjectToWaitOn: THandle; // объект, которого ожидает функция dwMilliseconds: DWORD; // период ожидания bAlertable: BOOL // задает, должна ли функция возвращать // управление в случае запроса на // асинхронный вызов процедуры ): DWORD; stdcall;
function MsgWaitForMultipleObjectsEx( nCount: DWORD; // количество объектов синхронизации var pHandles; // адрес массива объектов fWaitAll: BOOL; // Задает, требуется ли ожидание всех // объектов или любого dwMilliseconds, // Период ожидания dwWakeMask: DWORD // Тип события, прерывающего ожидание dwFlags: DWORD // Дополнительные флаги ): DWORD; stdcall;
Если параметр bAlertable равен TRUE (либо если dwFlags в функции MsgWaitForMultipleObjectsEx содержит MWMO_ALERTABLE), то при появлении в очереди APC запроса на асинхронный вызов процедуры операционная система выполняет вызовы всех имеющихся в очереди процедур, после чего функция возвращает значение WAIT_IO_COMPLETION.
Такой механизм позволяет реализовать, например, асинхронный ввод-вывод. Поток может инициировать фоновое выполнение одной или нескольких операций ввода-вывода функциями ReadFileEx или WriteFileEx, передав им адреса функций-обработчиков завершения операции. По завершении вызовы этих функций будут поставлены в очередь асинхронного вызова процедур. В свою очередь, инициировавший операции поток, когда он будет готов обработать результаты, может, используя одну из вышеприведенных функций ожидания, позволить операционной системе вызвать функции-обработчики. Поскольку очередь APC реализована на уровне ядра ОС, она более эффективна, чем очередь сообщений, и позволяет реализовать гораздо более эффективный ввод-вывод.
Объекты синхронизации
Объектами синхронизации называются объекты Windows, идентификаторы которых могут использоваться в функциях синхронизации. Они делятся на две группы: объекты, использующиеся только для синхронизации, и объекты, которые используются в других целях, но могут вызывать срабатывание функций ожидания. К первой группе относятся:
Event (событие)
Event позволяет известить один или несколько ожидающих потоков о наступлении события. Event бывает:
Отключаемый вручную |
Будучи установленным в сигнальное состояние, остается в нем до тех пор, пока не будет переключен явным вызовом функции ResetEvent |
Автоматически отключаемый |
Автоматически переключается в несигнальное состояние операционной системой, когда один из ожидающих его потоков завершается |
Для создания объекта используется функция CreateEvent:
function CreateEvent( lpEventAttributes: PSecurityAttributes; // Адрес структуры // TSecurityAttributes bManualReset, // Задает, будет Event переключаемым // вручную (TRUE) или автоматически (FALSE) bInitialState: BOOL; // Задает начальное состояние. Если TRUE - // объект в сигнальном состоянии lpName: PChar // Имя или NIL, если имя не требуется ): THandle; stdcall; // Возвращает идентификатор созданного // объекта
Структура TSecurityAttributes описана, как:
TSecurityAttributes = record nLength: DWORD; // Размер структуры, должен // инициализироваться как // SizeOf(TSecurityAttributes) lpSecurityDescriptor: Pointer; // Адрес дескриптора защиты. В // Windows 95 и 98 игнорируется // Обычно можно указывать NIL bInheritHandle: BOOL; // Задает, могут ли дочерние // процессы наследовать объект end;
Если не требуется задание особых прав доступа под Windows NT или возможности наследования объекта дочерними процессами, в качестве параметра lpEventAttributes можно передавать NIL. В этом случае объект не может наследоваться дочерними процессами и ему задается дескриптор защиты «по умолчанию».
Параметр lpName позволяет разделять объекты между процессами. Если lpName совпадает с именем уже существующего объекта типа Event, созданного текущим или любым другим процессом, то функция не создает нового объекта, а возвращает идентификатор уже существующего. При этом игнорируются параметры bManualReset, bInitialState и lpSecurityDescriptor. Проверить, был ли объект создан или используется уже существующий, можно следующим образом:
hEvent := CreateEvent(NIL, TRUE, FALSE, ‘EventName’); if hEvent = 0 then RaiseLastWin32Error; if GetLastError = ERROR_ALREADY_EXISTS then begin // Используем ранее созданный объект end;
Если объект используется для синхронизации внутри одного процесса, его можно объявить как глобальную переменную и создавать без имени.
Имя объекта не должно совпадать с именем любого из существующих объектов типов Semaphore, Mutex, Job, Waitable Timer или FileMapping. В случае совпадения имен функция возвращает ошибку.
Если известно, что Event уже создан, для получения доступа к нему можно вместо CreateEvent воспользоваться функцией OpenEvent:
function OpenEvent( dwDesiredAccess: DWORD; // Задает права доступа к объекту bInheritHandle: BOOL; // Задает, может ли объект наследоваться // дочерними процессами lpName: PChar // Имя объекта ): THandle; stdcall;
Функция возвращает идентификатор объекта либо 0 — в случае ошибки. Параметр dwDesiredAccess может принимать одно из следующих значений:
EVENT_ALL_ACCESS |
Приложение получает полный доступ к объекту |
EVENT_MODIFY_STATE |
Приложение может изменять состояние объекта функциями SetEvent и ResetEvent |
SYNCHRONIZE |
Только для Windows NT — приложение может использовать объект только в функциях ожидания |
После получения идентификатора можно приступать к его использованию. Для этого имеются следующие функции:
function SetEvent(hEvent: THandle): BOOL; stdcall;
— устанавливает объект в сигнальное состояние
function ResetEvent(hEvent: THandle): BOOL; stdcall;
— сбрасывает объект, устанавливая его в несигнальное состояние
function PulseEvent(hEvent: THandle): BOOL; stdcall
— устанавливает объект в сигнальное состояние, дает отработать всем функциям ожидания, ожидающим этот объект, а затем снова сбрасывает его.
В Windows API события используются для выполнения операций асинхронного ввода-вывода. Следующий пример показывает, как приложение инициирует запись одновременно в два файла, а затем ожидает завершения записи перед продолжением работы; такой подход может обеспечить более высокую производительность при высокой интенсивности ввода-вывода, чем последовательная запись:
var Events: array[0..1] of THandle; // Массив объектов синхронизации Overlapped: array[0..1] of TOverlapped; ... // Создаем объекты синхронизации Events[0] := CreateEvent(NIL, TRUE, FALSE, NIL); Events[1] := CreateEvent(NIL, TRUE, FALSE, NIL); // Инициализируем структуры TOverlapped FillChar(Overlapped, SizeOf(Overlapped), 0); Overlapped[0].hEvent := Events[0]; Overlapped[1].hEvent := Events[1]; // Начинаем асинхронную запись в файлы WriteFile(hFirstFile, FirstBuffer, SizeOf(FirstBuffer), FirstFileWritten, @Overlapped[0]); WriteFile(hSecondFile, SecondBuffer, SizeOf(SecondBuffer), SecondFileWritten, @Overlapped[1]); // Ожидаем завершения записи в оба файла WaitForMultipleObjects(2, @Events, TRUE, INFINITE); // Уничтожаем объекты синхронизации CloseHandle(Events[0]); CloseHandle(Events[1])
По завершении работы с объектом он должен быть уничтожен функцией CloseHandle.
Delphi предоставляет класс TEvent, инкапсулирующий функциональность объекта Event. Класс расположен в модуле SyncObjs.pas и объявлен следующим образом:
type TWaitResult = (wrSignaled, wrTimeout, wrAbandoned, wrError); TEvent = class(THandleObject) public constructor Create(EventAttributes: PSecurityAttributes; ManualReset, InitialState: Boolean; const Name: string); function WaitFor(Timeout: DWORD): TWaitResult; procedure SetEvent; procedure ResetEvent; end;
Назначение методов очевидно следует из их названий. Использование этого класса позволяет не вдаваться в тонкости реализации вызываемых функций Windows API. Для простейших случаев объявлен еще один класс с упрощенным конструктором:
type TSimpleEvent = class(TEvent) public constructor Create; end; … constructor TSimpleEvent.Create; begin FHandle := CreateEvent(nil, True, False, nil); end;
Mutex (Mutually Exclusive)
Мьютекс — это объект синхронизации, который находится в сигнальном состоянии только тогда, когда не принадлежит ни одному из процессов. Как только хотя бы один процесс запрашивает владение мьютексом, он переходит в несигнальное состояние и остается таким до тех пор, пока не будет освобожден владельцем. Такое поведение позволяет использовать мьютексы для синхронизации совместного доступа нескольких процессов к разделяемому ресурсу. Для создания мьютекса используется функция:
function CreateMutex( lpMutexAttributes: PSecurityAttributes; // Адрес структуры // TSecurityAttributes bInitialOwner: BOOL; // Задает, будет ли процесс владеть // мьютексом сразу после создания lpName: PChar // Имя мьютекса ): THandle; stdcall;
Функция возвращает идентификатор созданного объекта либо 0. Если мьютекс с заданным именем уже был создан, возвращается его идентификатор. В этом случае функция GetLastError вернет код ошибки ERROR_ALREDY_EXISTS. Имя не должно совпадать с именем уже существующего объекта типов Semaphore, Event, Job, Waitable Timer или FileMapping.
Если неизвестно, существует ли уже мьютекс с таким именем, программа не должна запрашивать владение объектом при создании (то есть должна передать в качестве bInitialOwner значение FALSE).
Если мьютекс уже существует, приложение может получить его идентификатор функцией OpenMutex:
function OpenMutex( dwDesiredAccess: DWORD; // Задает права доступа к объекту bInheritHandle: BOOL; // Задает, может ли объект наследоваться // дочерними процессами lpName: PChar // Имя объекта ): THandle; stdcall;
Параметр dwDesiredAccess может принимать одно из следующих значений:
MUTEX_ALL_ACCESS |
Приложение получает полный доступ к объекту |
SYNCHRONIZE |
Только для Windows NT — приложение может использовать объект только в функциях ожидания и функции ReleaseMutex |
Функция возвращает идентификатор открытого мьютекса либо 0 — в случае ошибки. Мьютекс переходит в сигнальное состояние после срабатывания функции ожидания, в которую был передан его идентификатор. Для возврата в несигнальное состояние служит функция ReleaseMutex:
function ReleaseMutex(hMutex: THandle): BOOL; stdcall;
Если несколько процессов обмениваются данными, например через файл, отображенный на память, то каждый из них должен содержать следующий код для обеспечения корректного доступа к общему ресурсу:
var Mutex: THandle; // При инициализации программы Mutex := CreateMutex(NIL, FALSE, ‘UniqueMutexName’); if Mutex = 0 then RaiseLastWin32Error; ... // Доступ к ресурсу WaitForSingleObject(Mutex, INFINITE); try // Доступ к ресурсу, захват мьютекса гарантирует, // что остальные процессы, пытающиеся получить доступ, // будут остановлены на функции WaitForSingleObject ... finally // Работа с ресурсом окончена, освобождаем его // для остальных процессов ReleaseMutex(Mutex); end; ... // При завершении программы CloseHandle(Mutex);
Подобный код удобно инкапсулировать в класс, который создает защищенный ресурс. Мьютекс имеет свойства и методы для оперирования ресурсом, защищая их при помощи функций синхронизации.
Разумеется, если работа с ресурсом может потребовать значительного времени, то необходимо либо использовать функцию MsgWaitForSingleObject, либо вызывать WaitForSingleObject в цикле с нулевым периодом ожидания, проверяя код возврата. В противном случае ваше приложение окажется замороженным. Всегда защищайте захват-освобождение объекта синхронизации при помощи блока try ... finally, иначе ошибка во время работы с ресурсом приведет к блокированию работы всех процессов, ожидающих его освобождения.
Semaphore (семафор)
Семафор представляет собой счетчик, содержащий целое число в диапазоне от 0 до максимальной величины, заданной при его создании. Счетчик уменьшается каждый раз, когда поток успешно завершает функцию ожидания, использующую семафор, и увеличивается путем вызова функции ReleaseSemaphore. При достижении семафором значения 0 он переходит в несигнальное состояние, при любых других значениях счетчика его состояние — сигнальное. Такое поведение позволяет использовать семафор в качестве ограничителя доступа к ресурсу, поддерживающему заранее заданное количество подключений.
Для создания семафора служит функция CreateSemaphore:
function CreateSemaphore( lpSemaphoreAttributes: PSecurityAttributes; // Адрес структуры // TSecurityAttributes lInitialCount, // Начальное значение счетчика lMaximumCount: Longint; // Максимальное значение счетчика lpName: PChar // Имя объекта ): THandle; stdcall;
Функция возвращает идентификатор созданного семафора либо 0, если создать объект не удалось.
Параметр lMaximumCount задает максимальное значение счетчика семафора, lInitialCount задает начальное значение счетчика и должен быть в диапазоне от 0 до lMaximumCount. lpName задает имя семафора. Если в системе уже есть семафор с таким именем, то новый не создается, а возвращается идентификатор существующего семафора. В случае если семафор используется внутри одного процесса, можно создать его без имени, передав в качестве lpName значение NIL. Имя семафора не должно совпадать с именем уже существующего объекта типов event, mutex, waitable timer, job или file-mapping.
Идентификатор ранее созданного семафора может быть также получен функцией OpenSemaphore:
function OpenSemaphore( dwDesiredAccess: DWORD; // Задает права доступа к объекту bInheritHandle: BOOL; // Задает, может ли объект наследоваться // дочерними процессами lpName: PChar // Имя объекта ): THandle; stdcall;
Параметр dwDesiredAccess может принимать одно из следующих значений:
SEMAPHORE_ALL_ACCESS |
Поток получает все права на семафор |
SEMAPHORE_MODIFY_STATE |
Поток может увеличивать счетчик семафора функцией ReleaseSemaphore |
SYNCHRONIZE |
Только для Windows NT — поток может использовать семафор в функциях ожидания |
Для увеличения счетчика семафора используется функция ReleaseSemaphore:
function ReleaseSemaphore( hSemaphore: THandle; // Идентификатор семафора lReleaseCount: Longint; // Счетчик будет увеличен на эту величину lpPreviousCount: Pointer // Адрес 32-битной переменной, // принимающей предыдущее значение // счетчика ): BOOL; stdcall;
Если значение счетчика после выполнения функции превысит заданный для него функцией CreateSemaphore максимум, то ReleaseSemaphore возвращает FALSE и значение семафора не изменяется. В качестве параметра lpPreviousCount можно передать NIL, если это значение нам не нужно.
Рассмотрим пример приложения, запускающего на выполнение несколько заданий в отдельных потоках (например, программа для фоновой загрузки файлов из Internet). Если количество одновременно выполняющихся заданий будет слишком велико, то это приведет к неоправданной загрузке канала. Поэтому реализуем потоки, в которых будет выполняться задание, таким образом, чтобы когда их количество превышает заранее заданную величину, то поток бы останавливался и ожидал завершения работы ранее запущенных заданий:
unit LimitedThread; interface uses Classes; type TLimitedThread = class(TThread) procedure Execute; override; end; implementation uses Windows; const MAX_THREAD_COUNT = 10; var Semaphore: THandle; procedure TLimitedThread.Execute; begin // Уменьшаем счетчик семафора. Если к этому моменту уже запущено // MAX_THREAD_COUNT потоков — счетчик равен 0 и семафор в // несигнальном состоянии. Поток будет заморожен до завершения // одного из запущенных ранее. WaitForSingleObject(Semaphore, INFINITE); // Здесь располагается код, отвечающий за функциональность потока, // например загрузка файла ... // Поток завершил работу, увеличиваем счетчик семафора и позволяем // начать обработку другим потокам. ReleaseSemaphore(Semaphore, 1, NIL); end; initialization // Создаем семафор при старте программы Semaphore := CreateSemaphore(NIL, MAX_THREAD_COUNT, MAX_THREAD_COUNT, NIL); finalization // Уничтожаем семафор по завершении программы CloseHandle(Semaphore); end;